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Correlated noise in occultation light curves… 

… source, effects, why/when you should care

Bob Anderson

IOTA Meeting: 30 JULY 2016

Good morning — I’m Bob Anderson. That having been said, I’m going to turn off my camera so that I can focus on the 
slides and my presentation notes.


TURN OFF CAMERA


  I’ll be giving a short talk about the effects of a special kind of noise that often appears in occultation light curves — 
temporally correlated noise.  


NEXT
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Extracting occultation timing from a light curve involves
‘best’ fitting of a ‘model’ light curve in the presence of obscuring noise.

Noise distribution characteristics are important because:

     … the type of noise (its distribution/histogram) determines the math
     to use. 

     For example, if one is making repeat measurements of
     a constant parameter (like baseline intensity) and the noise
     has a Gaussian distribution …

• the ‘best’ estimate of the parameter is the mean value of the readings

      but if the noise has a LogNormal distribution …

• the ‘best’ estimate of the parameter is now the median of the readings

  I’m the programmer behind R-OTE, so I have involved myself for a long time in the problems associated with 
extracting so-called square wave occultation timings from light curves — occultations where the star can be treated as 
a point source and diffraction effects are too fast to be captured by cameras operating at 30 or 25 frames per second.. 


PARAPHRASE  SLIDE  


As it turns out, in spite of the fact that occultation light curve noise sources have a variety of distributions — Poisson, 
Gaussian, and LogNormal —in my experience to date, the net effect is always indistinguishable from Gaussian — and I 
have looked hard for deviations from Gaussian. But the noise distribution (its histogram) is only part of the story. The 
temporal characteristics of the noise must also be taken into consideration. 
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Noise temporal characteristics are important because:

    … they affect D and R uncertainties (error bars)

READ SLIDE


And that is what this talk is about — the next slide shows graphically the effect to be discussed. 
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Gaussian noise versus time plots

• identical distributions (same standard deviation — same histogram)
• top trace:         no temporal correlation — independent noise
• middle trace:   mild temporal correlation
• bottom trace:  temporal correlation common in occultation observations

  Here we see three traces that are visually different — but they have exactly the same distribution histogram — they are 
all examples of Gaussian noise with the same standard deviation— what sets them apart are their temporal 
characteristics — which means the degree to which reading n reflects what has happened to prior readings.


  In statistics, one commonly encounters the term i.i.d (independent and identically distributed).

And many statistical analysis procedures require or assume the i.i.d. condition.


  The top trace satisfies i.i.d — the other two traces do not. The observation values are identically distributed — they 
are drawn from a Gaussian distribution.  But they are NOT independent — reading n depends on previous readings to 
some degree.  
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uncorrelated
noise

correlated
noise

  The primary tool for detecting and measuring the temporal characteristics of noise is the auto-correlation function.


  What that function does is compare the noise with a copy that is shifted in time by one or more frame times and 
computes a correlation coefficient between the two at that time shift.  The amount of the time shift is referred to as ‘lag’.  
At a lag of zero, the noise is being compared with itself, so the correlation coefficient is equal to unity. What is of more 
interest are the coefficients for lag greater than zero.


  These plots are excerpts from the noise analysis panel in R-OTE. The right-hand plot in each panel is a plot of the 
auto-correlation coefficients out to lag=20. At the top of each panel is a list of the acf coefficients that meet a test for 
statistical significance.
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Causes of non-zero acf coefficients for lag > 0 …

• The atmosphere boils and shifts (scintillation)

          This produces an intensity modulation of the incoming
          light that varies with time over some 10’s of milliseconds

          So, at NTSC and PAL frame rates, atmospheric scintillation
          causes time-correlated readings in light curves

• Sloping light curve (so de-trending required)

• Clouds (so data must be normalized)

• Electrical noise - 60Hz for example (can be fourier filtered)

  It’s worth spending a little time talking about what can cause the noise auto-correlation function to have statistically 
significant coefficients for lags greater than 0.


READ SLIDE


  R-OTE provides for the determination of noise auto-correlation coefficients and then uses the values found during the 
estimation of error bars.

  

  We are primarily interested in dealing with the effects of scintillation noise, so other observational conditions that can 
produce non-zero auto-correlation coefficients must be dealt with first.  R-OTE provides tools for dealing with these.


 NEXT
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Monte Carlo simulations are used to …

….. study solution distributions

….. study effects of noise on solution distributions

In order to perform realistic simulations, it is necessary to use gaussian noise with 
temporal characteristics matched to real observation noise.

This is done by generating a correlation matrix (from the acf coefficients estimated
from the light curve noise), followed by Cholesky Decomposition of that matrix,
followed by a matrix multiplication with an uncorrelated Gaussian noise vector.

….. this procedure produces Gaussian noise with the desired acf coefficients

  Occultation observations are, by their very nature, ‘one-off’ — we can’t repeat an observation many times, so there is 
no direct way to study the statistical properties of our D and R time extractions.


  The work-around that is commonly used is Monte Carlo simulation. It proceeds by taking a noise-free model light 
curve with the D, R, B and A parameters extracted from the original light curve, adding realistic noise, and re-finding the 
D and R values. This procedure is repeated thousands of times. Then, the results are summarized in a histogram that 
shows how many time a particular solution occurred. 


NEXT
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8Correlated versus uncorrelated noise: effect on solution distributions (note vertical scale change)

Histogram of edge (D) errors due to noise
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Histogram of edge (D) errors due to noise
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  This is from an R-OTE error bar estimation panel. The top plot gives shows the solution histogram when the 
observation noise has no temporal correlations — auto-correlation coefficients at lag=1 and greater are effectively zero.  
The lower plot gives the solution histogram with the same amount of noise — same standard deviation — but with 
significant auto-correlation coefficients at lag=1 and higher — in this case, all the way out to lag=6.

  I should mention that R-OTE uses log likelihood for its ‘best fit’ metric. Using this metric, the ‘best fit’ is the set of 
parameters that maximizes the likelihood calculation. Shortly I will discuss other commonly used metrics. Meanwhile, I 
just want to point out a few things on this slide:


POINT OUT ERROR BAR LINES


The error bar expansion shows how correlated noise in an observation increases the uncertainty in D time extractions.

POINT OUT SCALE CHANGE

NEXT
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D solution distribution: very much non-Gaussian

Histogram of edge (D) errors due to noise
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  We are more used to measurements that have a Gaussian distribution of ‘solutions’. That is obviously not the case for 
the distribution of occultation edge positions — as the present slide demonstrates. Not to belabor the point too much, 
but the blue curve on this plot is the best fit of a Gaussian distribution to the solution histogram of 100,000 Monte Carlo 
trials. Hopefully this also makes it clear that, for occultation edge position error bars, it would be extremely misleading 
to refer to them as 1 sigma, or 2 sigma, or 3 sigma — such terminology should be used only when the solution 
distribution is Gaussian. 
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Will a fancier ‘solver’ help?

Why do we think a ‘correlation aware’ solver might be able to do a better job..

Because it can make use of extra information  …
It can compute the likelihood of measurement n given the value of
measurement n-1 … this is the ‘extra’ information

But does it help?

   Sometimes it does — sometimes it does not

The following slides explore this question

  The standard metrics in common usage for curve fitting— like ordinary least squares for example — assume that the 
noise is i.i.d — that is, independent and identically distributed.


  The i.i.d requirement can of course be ignored — the solvers will still work. But the obvious question is posed by this 
slide…  


READ THE SLIDE


  To shed some light on this question, I set up a series of Monte Carlo simulations that employed different solvers — 
that is, different metrics of ‘best fit’. The next slide shows an example of one test case.
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B=10 A=8  sigmaB=5 sigmaA=5  acfcoeffs=[1, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05]  snr=0.4  rho=0.5

  Here we see a typical test case that is ‘solved’ for D as part of the Monte Carlo simulation. The rho=0.5 is the value of 
the acf coefficient at lag 1 — it reflects the dependence of reading n on reading n-1. The importance of this number is 
that it is the input to a special ‘correlation aware’ solver that was developed for this test. We’’ll see this in the next slide.
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B=10 A=8  sigmaB=5 sigmaA=5  acfcoeffs=[1, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05]  snr=0.4  rho=0.5

  Here are the simulation results using four different ‘solvers’ — each ‘solver’ uses a different calculation of the metric 
used to determine the ‘best fit’.

 The metric for the ordinary least squares ‘solver’ is the usual sum of the squares of the deviations — a metric that is 
minimized to achieve ‘best fit’. 

  The weighted least squares ‘solver’ uses a metric that also sums the squares of the deviations, but weights each point 
by the noise level in that region — this metric is minimized to achieve ‘best fit’. 

  The log likelihood ‘solver’ is the one used in R-OTE and achieves ‘best fit’ by maximizing this metric. 

  The correlated logl ‘solver’ includes a likelihood calculation based on conditional probability, that is, it calculates the 
likelihood of reading n conditioned by the value of reading n-1 — this is the only ‘correlated noise aware’ solver in the 
experiment and it only takes into account the auto-correlation coefficient at lag=1.


  It’s hard to see much difference in these plots. It’s easier to see distribution differences by looking at the cumulative 
probability plots. These are shown on the next slide.  NEXT
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B=10 A=8  sigmaB=5 sigmaA=5  acfcoeffs=[1, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05]  snr=0.4  rho=0.5
(error bars at 95% confidence level)

  Clearly, there isn’t much difference between the ‘solvers’ — they all produce essentially identical solution histograms 
— it’s likely that if a larger number of trials were employed, the agreement would improve.


  I want to point out that the baseline noise sigma (sigmaB=5) is equal to the event noise sigma (sigmaA=5) — I 
emphasize this because the situation when the baseline and event noise are NOT equal is rather different.


  The error bars shown here are at the 95% confidence level. I conclude from this plot that any of the ‘solvers’ can be 
used when the noise at A is the same as the noise at B. The fact that the i.i.d requirement is not satisfied has no effect 
on the solutions obtained.
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Many observations exhibit asymmetric noise — baseline
noise is greater than event noise.

This is because …

• Scintillation noise is proportional to intensity

• Photon noise is proportional to intensity

• and of course, B (baseline intensity) > A (event intensity)

So, if there is a magDrop of 0.25 or greater, it is expected that
baseline noise can be noticeably greater than event noise.

  In the previous study, baseline and event noise where selected to be equal.  However, it is often the case that there is 
a difference in baseline noise levels and event noise levels as the bullet points on this slide explain.


REVIEW THE SLIDE BULLET POINTS


  When this is the case, the choice of ‘solver’ becomes important. This is shown in the next slide. 


NEXT
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B=10 A=8  sigmaB=5 sigmaA=4  acfcoeffs=[1, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05]  snr=0.4  rho=0.5

  Now there are visually apparent differences in the solution distributions. The correlated logl solver (the one whose 
metric takes into account that the value at frame n is influenced by the value at frame n-1) is three times more likely to 
‘nail it’ than the ordinary least squares solver. It’s a little less obvious that the distributions are narrower, but the 
cumulative probability plots are easier to use for such comparisons.
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B=10 A=8  sigmaB=5 sigmaA=4  acfcoeffs=[1, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05]  snr=0.4  rho=0.5

And now we can see that under some conditions, the choice of ‘solver’ becomes an issue to be considered.


The error bars are shown here at the 95% confidence level for all four ‘solvers’.


The red arrow points out the error bars achieved with the ‘correlation aware’ solver — it has tighter error bars.


The green arrow points out the error bars resulting from standard least squares based ‘solver’


The brown arrow shows the error bars that are reported by the R-OTE log likelihood ‘solver’ — that particular ‘solver’ is 
oblivious to the temporal characteristics of the noise but does deal with asymmetric noise.


NEXT
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The previous slide suggests that narrower solution histograms can
result from the use of a metric that takes into account temporal correlation.

But the conditions were rather special — to see significant differences,
a long duration, noisy observation with detectable noise asymmetry is
required.

In any case, none of the ‘solvers’ introduce a bias — the most frequent 
solution (the peak of the histogram) is always at zero.

So a ‘correlation aware solver’ is not required.

Do we need a ‘correlation aware solver’ for 
occultation timing extraction?

Here I’m just going to read the slide.


READ THE SLIDE
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The answer here is clearly yes.  No matter what ‘solver’ is in
use, error bars are always bigger when scintillation noise
is present.

It is essential to use correlated noise that matches the observation
conditions when estimating error bars via Monte Carlo.

If correlated noise effects are not taken into consideration,
error bars that are too small — too optimistic — will result.

Whether or not the ‘solver’ is ‘correlation aware’ has a smaller
effect on error bars and then only under relatively rare conditions.

The effect of using a ‘solver’ that ignores correlation is to produce
error bars that are a bit more pessimistic.

Until such time as cameras evolve to higher speeds and lower noise,
R-OTE will continue to use a non-correlation-aware solver given
that the only penalty will be pessimistic error bars under some conditions.

Do we need to take temporal characteristics of the observation
into account when estimating error bars?

Again, I’m just going to read the slide.


READ THE SLIDE


And that concludes my talk.
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