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Observer H.Hekmat Observer N.Taebjoola Observer H.Hekmat
Assistance N.Taebjoola Assistance H.Hekmat Assistance N.Taebjoola
Star Name (SAO) [98266 Star Name (SAO) 98235 Star Name (SAO) 185296
Telescope (Aper) 25cm Telescope (Aper) 25 CM Telescope (Aper) 25 CM
Longitude +4824 42.8 Longitude +4824 42.8 Longitude +482442.8
Latitude +322325.2 Latitude +322325.2 Latitude +322325.2
Alt 144 Alt 144 Alt 144

City Dezful City Dezful City Dezful

Date (D/M/Y) 19/4/2013 Date (D/M/Y) 19/4/2013 Date (D/M/Y) 28/4/2013
Hour 19 Hour 17 Hour 21

Minute 36 Minute 20 Minute 6

Second 19.6 Second 50.2 Second 45.40
Position D Position R Position R

Limb basis Kaguya Limb basis Kaguya Limb basis Kaguya
Oo-C -0.07 Oo-C 0.06 o-C -0.18
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Kepler Discovers
its Smallest Habitable Zone Planets

Kepler-62f

Kepler-62e Kepler-69¢ Kepler-22b

PASADENA, Calif. - NASA's Kepler mission has discov-
ered two new planetary systems that include three super-
Earth-size planets in the "habitable zone," the range of dis-
tance from a star where the surface temperature of an orbit-
ing planet might be suitable for liquid water. The Kepler-62
system has five planets: 62b, 62c, 62d, 62e and 62f. The
Kepler-69 system has two planets: 69b and 69c. Kepler-
62e, 62f and 69c are the super-Earth-sized planets. Two of
the newly discovered planets orbit a star smaller and cooler
than the sun. Kepler-62f is only 40 percent larger than
Earth, making it the exoplanet closest to the size of our
planet known in the habitable zone of another star. Kepler-
62f is likely to have a rocky composition. Kepler-62e orbits
on the inner edge of the habitable zone and is roughly 60
percent larger than Earth. The third planet, Kepler-69c, is 70
percent larger than the size of Earth, and orbits in the habit-
able zone of a star similar to our sun. Astronomers are un-
certain about the composition of Kepler-69c, but its orbit of
242 days around a sun-like star resembles that of our
neighboring planet Venus.

Scientists do not know whether life could exist on the new-
found planets, but their discovery signals we are another
step closer to finding a world similar to Earth around a star
like our sun. "The Kepler spacecraft has certainly turned out
to be a rock star of science," said John Grunsfeld, associate
administrator of the Science Mission Directorate at NASA
Headquarters in Washington. "The discovery of these rocky
planets in the habitable zone brings us a bit closer to finding
a place like home. It is only a matter of time before we know
if the galaxy is home to a multitude of planets like Earth, or
if we are a rarity."

The Kepler space telescope, which simultaneously and con-
tinuously measures the brightness of more than 150,000
stars, is NASA's first mission capable of detecting Earth-
size planets around stars like our sun. Orbiting its star every
122 days, Kepler-62e was the first of these habitable zone
planets identified. Kepler-62f, with an orbital period of 267
days, was later found by Eric Agol, associate professor of
astronomy at the University of Washington and co-author of
a paper on the discoveries published in the journal Science.
The size of Kepler-62f is nhow measured, but its mass and
composition are not. However, based on previous studies of
rocky exoplanets similar in size, scientists are able to esti-
mate its mass by association.

Joumnal for Occultation and Eclipsing (JOE) — IOTA/ME

"The detection and confirmation of planets is an enormously
collaborative effort of talent and resources, and requires ex-
pertise from across the scientific community to produce these
tremendous results," said William Borucki, Kepler science
principal investigator at NASA's Ames Research Center at
Moffett Field, Calif., and lead author of the Kepler-62 system
paper in Science. "Kepler has brought a resurgence of astro-
nomical discoveries and we are making excellent progress
toward determining if planets like ours are the exception or
the rule. "The two habitable zone worlds orbiting Kepler-62
have three companions in orbits closer to their star, two lar-
ger than the size of Earth and one about the size of Mars.
Kepler-62b, Kepler-62c and Kepler-62d orbit every five, 12
and 18 days, respectively, making them very hot and inhospi-
table for life as we know it. The five planets of the Kepler-62
system orbit a star classified as a K2 dwarf, measuring just
two-thirds the size of the sun and only one-fifth as bright. At
seven billion years old, the star is somewhat older than the
sun. It is about 1,200 light-years from Earth in the constella-
tion Lyra. A companion to Kepler-69c, known as Kepler-69b,
is more than twice the size of Earth and whizzes around its
star every 13 days. The Kepler-69 planets' host star belongs
to the same class as our sun, called G-type. It is 93 percent
the size of the sun and 80 percent as luminous and is located
approximately 2,700 light-years from Earth in the constella-
tion Cygnus. "We only know of one star that hosts a planet
with life, the sun. Finding a planet in the habitable zone
around a star like our sun is a significant milestone toward
finding truly Earth-like planets," said Thomas Barclay, Kepler
scientist at the Bay Area Environmental Research Institute in
Sonoma, Calif., and lead author of the Kepler-69 system dis-
covery published in the Astrophysical Journal. When a planet
candidate transits, or passes in front of the star from the
spacecraft's vantage point, a percentage of light from the star
is blocked. The resulting dip in the brightness of the starlight
reveals the transiting planet's size relative to its star. Using
the transit method, Kepler has detected 2,740 candidates.
Using various analysis techniques, ground telescopes and
other space assets, 122 planets have been confirmed. Early
in the mission, the Kepler telescope primarily found large,
gaseous giants in very close orbits of their stars. Known as
"hot Jupiters," these are easier to detect due to their size and
very short orbital periods. Earth would take three years to
accomplish the three transits required to be accepted as a
planet candidate. As Kepler continues to observe, transit
signals of habitable zone planets the size of Earth that are
orbiting stars like the sun will begin to emerge. Ames is re-
sponsible for Kepler's ground system development, mission
operations and science data analysis. NASA's Jet Propulsion
Laboratory in Pasadena, Calif., managed Kepler mission
development. Ball Aerospace & Technologies Corp. in Boul-
der, Colo., developed the Kepler flight system and supports
mission operations with the Laboratory for Atmospheric and
Space Physics at the University of Colorado in Boulder. The
Space Telescope Science Institute in Baltimore archives,
hosts and distributes Kepler science data. Kepler is NASA's
10th Discovery Mission and was funded by the agency's Sci-
ence Mission Directorate.

http://mwww.jpl.nasa.gov/news/
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John K. Davies (UK Astronomy Technology Centre)
John McFarland and Mark E. Bailey (Armagh Observatory)
Brian G. Marsden (Harvard-Smithsonian Center for Astrophysics)
Wing-Huen Ip (National Central University, Taiwan)
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The Early Development of Ideas Concerning the Transneptunian Region
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We review the history of the prediction of, and searches for, a population of comets and transneptunian planetesimals.
Starting with initial speculations before and after the discovery of Pluto, we examine various predictions by Edgeworth,
Kuiper, and others on the existence of such a population and review the increasingly sophisticated theoretical efforts that
eventually showed that the number of short-period comets requires that an ecliptic transneptunian population exists. We
then recount various search programs that culminated in the discovery of the first few transneptunian objects and led to
the realization that this region is dynamically much more complicated than first suspected and has important links both to

Centaurs and the dense inner core of the Oort cloud.

1. FIRST QUANTITATIVE APPROACHES

1.1. Edgeworth

A more comprehensive approach to the problem was
made by the independent Irish astronomer Kenneth E.
Edgeworth (McFarland, 1996) during the 1930s. After a
successful military and civilian career, Edgeworth retired
to his family home in Ireland and began developing his
ideas on the cosmogony of the solar system. This work,
“The Evolution of the Solar System,” culminated in a
manuscript submitted for publication in 1938 (McFarland,
2004), which essentially developed the very old idea
[dating back, at least, to Kant’'s (1755) Universal Natural
History and Theory of the Heavens] that the formation of
planets could be understood as a consequence of the
accumulation of numerous smaller bodies, or condensa-
tions, in a protoplanetary disk that extended far beyond
the known planetary orbits. Edgeworth’s manuscript lay
in the hands of several publishing houses (e.g., George
Allen and Unwin Ltd., Methuen and Co. Ltd.) as early as
the spring of 1938. It also reached several leading as-
tronomers of the day. For example, at the suggestion of
R. A. Lyttleton, a copy was sent by F. J. M. Stratton to
W. J. Luyten, who commented favorably upon Edge-
worth’s approach to the problem in a personal communi-
cation to the latter (Luyten, 1938).

His published work (Edgeworth, 1943, 1949) appears to
have been the first quantitative investigation into the pos-
sible existence of a vast number of potential comets in
an ecliptic annulus beyond the orbits of Neptune and
Pluto. Postulating a primordial disk of gas and small par-
ticles orbiting around an already well-developed Sun, he
proposed, in what was a very early discussion of the ef-
fects of viscous and tidal forces on the dissipation of an-
gular momentum in the protoplanetary disk, that if the
system was sufficiently dense to cause it to condense
into various subregions, then these would coalesce to

form the major planets.

Joumnal for Occultation and Eclipsing (JOE) — IOTA/ME

On the outskirts of the system, however, beyond Nep-
tune and Pluto, the density of the disk would be lower
and the condensation processes that formed the major
planets would have insufficient time to operate fully and
form large single planets. Thus, again following ideas
that can be traced to Kant's cosmogony, Edgeworth
noted that owing to the decrease of density in the out-
skirts of the nebula and the lower velocities of condensa-
tions in this region, the rate of growth of individual bodies
would decrease rapidly with increasing heliocentric dis-
tance (cf. Bailey, 1994).

In this way, Edgeworth calculated that at great distances
the condensation processes would produce a system
comprising a very large number of relatively small
“heaps of gravel” that would survive to the present day.
He felt that if these bodies were seen at close quarters
they would appear as partially condensed clusters com-
posed of a small nucleus with a concomitant Saturn-like
disk (Edgeworth, 1961). These bodies would become
visible as observable comets if perturbed on to Sun-
approaching orbits.

In his unpublished manuscript (Edgeworth, 1938), he
also made order-of-magnitude calculations of the ap-
proximate number and sizes of the potential comets be-
yond Neptune, first for a total mass in the annulus of
0.33 My and then for 0.1 My . These calculations yielded
figures of 200 million and 2000 million objects with indi-
vidual masses of about 2 x 10° Mg and 5 x 10-11 M ,
respectively, i.e., they would be smaller and more nu-
merous than most of the then-known minor planets in the
main asteroid belt. The annulus, Edgeworth reasoned,
extended from about 65 AU to perhaps over 260 AU and
he felt that these numbers and sizes matched those re-
quired to replenish the continual loss of comets
(Edgeworth, 1938).




From his calculations, Edgeworth concluded that Nep-
tune represented the limiting case for the formation of a
single large planet in the outer solar system. Unless
there was considerably more mass than seemed reason-
able in the transneptunian disk, it would be impossible to
form a single large transneptunian planet. The status of
Pluto, in Edgeworth’s mind, appeared to alternate be-
tween that of a planet and that of an escaped satellite of
Neptune. Of Pluto, he wrote: “Pluto, the latest addition to
our list of members of the solar system, is too small to be
classed as a major planet, in spite of its position; it has
been suggested that it is an escaped satellite of Nep-
tune’s and we shall find in due course that there are
good reasons for placing it in that category” (Edgeworth,
1938). In making this remark he was presumably refer-
ring to the paper of Lyttleton (1936) on a possible origin
for Pluto. Later, in his book (Edgeworth, 1961), he some-
times ranks it among the planets. Overall, Edgeworth
had a remarkably interesting and productive life and
many of his astronomical ideas anticipated future devel-
opments. Given his “amateur” position, it is difficult to
know the extent to which his quantitative analysis would
have influenced other key workers in the field, which at
the time was in a highly fluid state. Nevertheless, it is
clear that he had a firm grasp of the problem and a vari-
ety of independent views, and it has been argued (e.g.,
Bruck, 1996; McFarland, 1996, 2004; Green, 1999,
2004) that his work should be given greater credit.

1.2. Kuiper
A second significant contribution to the study of the origin

of the solar system came from Gerard P. Kuiper (for a
biography, see Cruikshank, 1993) in a paper published in
a symposium to mark the progress of astrophysics dur-
ing the half-century since the establishment of the
Yerkes Observatory (Kuiper, 1951a). Although Kuiper
(1951Db) states that this symposium paper had been sub-
mitted for publication in November 1949 and was given
limited circulation in February 1950, he evidently had
time to include discussion of both Oort’'s (1950) and
Whipple’'s (1950a,b) seminal papers, published in the
first quarter of 1950. In his section entitled “Comets and
Unknown Planets,” Kuiper considered the fate of a belt of
nebular material beyond Neptune and extending as far
as Pluto’s aphelion distance (i.e., from approximately 38
AU to 50 AU). He assumed that the temperature in this
relatively stable region was low enough for water vapor,
methane, and ammonia to condense first to form
“snowflakes” and then objects a few tens of centimeters
across (see also Kuiper, 1956). He stated that these
“snowballs” would continue to combine even long after
the dissipation of the solar nebula, so that after a gig
year, the average size of the bodies would be in the re-
gion of 1 km across, with the largest ones perhaps up to
100 km across.
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If the belt of material had a mass of 5 x 10 kg, Kuiper
estimated that this would agree with Oort’s (1950) esti-
mate of .1011 members of total mass 10* kg in his giant
spheroidal comet reservoir.

Kuiper's work resonated with Whipple’s icy conglomerate
picture for the cometary nucleus (Whipple, 1950a,b), al-
though it was developed apparently quite independently
of Whipple’s work. Kuiper felt that comets had probably
not been formed between Mars and Jupiter, as Oort had
speculatively suggested, but postulated instead that
many of these “snowballs” could be delivered by Pluto’s
perturbations first toward Neptune and then by further
planetary perturbations, including those of Jupiter, into
Oort’s “comet trap” (cf. .pik, 1932). This mechanism re-
quired Pluto to have a mass in the range 0.1-1.0 M ,
which, although later disproved by the discovery of
Charon (Christy and Harrington, 1978), was widely be-
lieved at this time. Kuiper concluded that the comets we
see today were sent from the giant cometary cloud into
the inner solar system by Oort’s mechanism of random
perturbations by passing stars, which had resulted in their
isotropic distribution of directions of approach. Beyond
Pluto’s aphelion distance of 50 AU, where its dynamical
sweeping would be negligible, Kuiper reintroduced the
important idea, dating from the previous generation, that
a primordial belt of residual nebular material may still ex-
ist, and be populated by comets. Kuiper also considered
that the fragility of comets and their tendency to disinte-
grate into small meteoroids was in accord with this sce-
nario.

2. COMET BELT
2.1. Whipple and a Comet Ring
Although Pluto’s intrinsic faintness and measurements

by Kuiper of its angular size suggested an object having
no more than half the diameter of Earth, attempts to de-
termine its mass from its perturbations on other bodies in
the outer planetary system persisted in giving figures as
large as 0.9 Mg (Brouwer, 1951), even into the 1960s.
Concerned that the resulting density was impossibly
large, Whipple (1964a,b) considered that the perturba-
tions might instead come from a ring of icy cometary bod-
ies, of which Pluto would merely be one member. He
found that a ring of material having 10—-20 Mg at a solar
distance of 40-50 AU was one of a humber of nonunique
solutions that might fit the observations, and he urged
that this be tested by better determinations of the orbits of
Uranus, Neptune, and Pluto. Supposing that the comet
ring consisted of objects of diameter more than 1 km and
albedo 0.07 in a disk 2° thick at heliocentric distance 40
AU, Whipple calculated that, even with a total mass of
100 M , the surface brightness of the disk would be no
brighter than 7th magnitude per square degree and there-
fore undetectable against the glow of the zodiacal light
and the gegenschein.
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He also remarked that, with an apparent magnitude of 22,
an individual body as large as 100 km across would still
not be detectable with the instrumentation available at the
time.

2.2. Observational Constraints

In an attempt to place more exacting demands on the
mass of the Whipple comet ring, Hamid et al. (1968) com-
puted the effect of the secular perturbations of such a ring
on the orbits of seven known periodic comets with aphelia
greater than 30 AU. They found that the strongest test
would be provided by Comet 1P/Halley, and that their
calculations did not support the existence of a comet belt
of more than 0.5 M4 to a distance of 40 AU and of more
than 1.3 M to 50 AU. Although the computation of
cometary orbits is complicated by the effects of no gravi-
tational forces, there was some credence to a result in
terms of perturbations of the cometary orbital planes, be-
cause these are not obviously affected by such no gravi-
tational effects. Nevertheless, the apparent existence of
unexplained perturbations on the orbital planes of Nep-
tune and Uranus continued to be a worry, and it caused
others to conclude that moderately massive unknown
planets, as well as comets, remained to be discovered
within 100 AU of the Sun (cf. Brady, 1972; Goldreich and
Ward, 1972; Seidelmann et al., 1972), and various sug-
gestions were made to detect such hypothetical material
(e.g., Whipple, 1975; Bailey et al.,1984). Bailey (1976)
appears to have been the first to consider the role of stel-
lar occultations as a possible probe of these “invisible”
outer solar system bodies, and in later work (Bailey,
1983a,b, 1986) noted that a suitable density distribution
of comets in a spheroidal distribution could be a source of
the unmodeled forces previously attributed to “Planet X”
as well as a potential additional source for short-period
comets. We note the recent detection of apparent
“shadows” caused by distant sub-kilometer objects oc-
culting the compact X-ray source Scorpius X-1 (Chang et
al., 2006; cf. Jones et al., 2006), and similarly, the appar-
ent detection by Roques et al. (2006) of distant sub-
kilometer objects at visual wavelengths using the high-
speed ULTRACAM camera mounted on the 4.2-m Wil-
liam Herschel Telescope. Another approach was taken by
Jackson and Killen (1988). They considered that the far-
infrared flux emitted by dust produced during the grinding
down of bodies through mutual collisions might be detect-
able. Although they admitted that the number of free pa-
rameters made drawing any conclusions from their mod-
els difficult, and no such detection of solar system dust
was ever made in data taken by IRAS or COBE,
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Sub-millimeter observations of cool dust disks around
other nearby stars have recently spawned a lively area
of research. Thus, during the 1960s through the mid-
1980s many authors had begun to consider different
models for a transneptunian cometary density distribu-
tion (e.g., Cameron, 1962; Whipple, 1964b; Safronov,
1969, 1977; Mendis, 1973; .pik, 1973; Biermann and
Michel, 1978; Hills, 1981), and thoughtful reviews of the
position up to about 1990 were provided by Hogg et al.
(1991) and Tremaine (1990). Soon after, however, from
a careful analysis of data from the Voyager mission,
Standish (1993) appeared finally to lay Lowell’'s Planet X
to rest. He concluded that there was no evidence for any
significant unobserved mass in the outer solar system if
correct values were used for the masses and orbital ele-
ments of the known planets.

2.3. Jupiter-Family Comets
The problem of the origin of the majority of short-period

comets — those with periods less than about 20 yr and
often described as “Jupiter-family” comets — had con-
founded, for a century or more, theoretical predictions
based on the classical capture of comets from the near
parabolic flux. The key difficulty lay in the efficiency of
the capture process, i.e., how many short-period comets
would be produced from the observed long-period flux.
Analytic work (e.g., Newton, 1878) had demonstrated
that it was impossible to produce the observed number
of short-period comets as a result of single close ap-
proaches of objects in nearly parabolic orbits to Jupiter.
The introduction of powerful new computational tools
during the 1970s, however, increasingly focused atten-
tion on the process of gravitational capture of comets
into short-period orbits by a more gradual random-walk
evolution: either “diffusion” of orbital energy (e.g., Ever-
hart, 1972) or a more complex process. The latter would
involve the exchange of an object’s perihelion and aphe-
lion distances as a result of exceptionally close planetary
approaches (Stromgren, 1947), leading to the “handing
down” of comets in the outer solar system from one
planet to another (e.g., Kazimirchak-Polonskaya, 1972,
1976; Vaghi, 1973; Everhart, 1976, 1977). Everhart's
work (e.g., Everhart, 1972) had highlighted the important
role of the so-called “capture zone” in the dynamical evo-
lution of nearly parabolic orbits to short-period, Jupiter-
family types. This showed that the majority of captured
short-period comets appeared to originate from a rather
narrow region of phase space, i.e., from originally nearly
parabolic orbits with initial perihelion distances, g, in the
range 4-6 AU and initially low (i < 9°) inclinations, the
capture probability from all other parts of the (q, i) plane
being much smaller.
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According to Everhart's detailed investigations, the gravi-
tational influence of Jupiter, and to a lesser extent that of
Saturn, resulted in the capture to short-period orbits of
0.7% of the original near-parabolic flux within this region
by the time they had orbited the Sun 2000 times.

Although Everhart had been careful to state that this was

not the only evolutionary picture (and the issue of the
number of orbits before dynamical capture had occurred
was also an important consideration), an influential paper
by Joss (1973) provided a rather damning counterargu-
ment. Given the low efficiency of the perturbative proc-
ess demonstrated by Everhart, and the fact that inclina-
tions less than 9° account for only a very small fraction
(some 0.6%) of the observed isotropic near-parabolic
flux, Joss showed that the predicted steady-state number
of short-period comets was still too small. Thus, neither
“diffusion” nor capture by a single close approach to
Jupiter seemed capable of explaining the observed num-
ber of Jupiter-family comets, at least from the observed
near-parabolic flux. He concluded simply (and correctly!)
that the origin of short-period comets was not then un-
derstood.

Another approach was highlighted by Fernandez (1980).
He showed that if the observed Jupiter-family comets
originated from a steady-state isotropic nearly parabolic
flux, the process was so highly inefficient that it should
have led to the loss from the Oort cloud (and the plane-
tary system) of more than 1012 long-period comets over
the age of the solar system.

Joumnal for Occultation and Eclipsing (JOE) — IOTA/ME

The second key innovation made by Fernandez was to
estimate the rate of orbital diffusion as a result of random
gravitational encounters between the comets and
planetesimals. The actual efficiency for scattering the
bodies on to Neptune-crossing orbits, so that they could
in turn be injected on to short-period orbits by the se-
guential “handing down” process mentioned above, de-
pends on the mass (Mpay ~ 1022~10% kg) of the largest
member of the distribution and the differential mass-
distribution index (. ~ 1.5—- 1.9). As we have now learned
(Torbett, 1989; Torbett and Smoluchowski, 1990; Dun-
can et al., 1995), the orbital evolution of these transnep-
tunian objects is driven both by such close approaches
and the long-term chaotic gravitational effects of the
outer planets, for example, the e—i excitation mecha-
nisms associated with mean-motion resonances in the
outer planetary region. Nevertheless, by postulating the
existence of Pluto-sized objects in the transneptunian
disk, Fernandez made a bold suggestion that has since
stood the test of time. After this pioneering work, Fernan-
dez began a series of collaborative projects with W.-H. Ip
on the orbital evolution of icy planetesimals in the outer
planetary accretion zones. Making use of the statistical
method of orbital calculation invented by .pik (1951) and
Arnold (1965), they explored the injection of such icy
planetesimals into the Oort cloud and their subsequent
return to the inner solar system as near-parabolic com-
ets (Fernandez and Ip, 1981, 1983). An unexpected re-
sult from their numerical modeling effort concerned the
outward migration of Saturn, Uranus, and Neptune, ac-
companied by the inward migration of Jupiter, during the
accretion phase of the two outer planets (Fernandez and
Ip, 1984). This process is driven by the extensive ex-
change of orbital energy and angular momentum of the
widely scattered planetesimals, which have total masses
comparable to that of the major planets. As discussed
below, such an orbital migration process has formed the
theoretical basis (Malhotra, 1995) for the trapping
mechanism of Pluto and other transneptunian objects in
the 2:3 mean-motion resonance with Neptune (the so-
called “Plutinos”).

Edgeworth
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2.4. Kuiper Belt
A major departure came not just with the potential to in-

tegrate the orbits of thousands of comets for timescales
comparable to the age of the solar system, but with the
focus on a new question, namely the distribution of the
inclinations of the short-period comets. Noting that the
process of gravitational capture should roughly conserve
the orbital inclinations of the captured comets, at least in
a statistical sense, Duncan et al. (1988) found that cap-
ture from an initial nearly isotropic parabolic flux would
tend to produce short-period comets with a much
broader spread of inclinations than are observed. Setting
aside the question of how many orbits would be required
for the dynamical capture from long-period orbits to take
place (the process would generally take longer for high-
inclination retrograde orbits than for low-inclination direct
types), they concluded that the generally low inclinations
of the majority of “short period” comets with periods less
than 200 yr required a flattened distribution of source
orbits. This was contrary to the results of Everhart, who
had focused on comets with orbital periods less than a
dozen years. In particular, they proposed that the ob-
served short-period comets must be fed from a low-
inclination commentary reservoir close to the orbit of
Neptune. They proposed naming the region the “Kuiper
belt,” but Tremaine has since noted that when the paper
was written they were unfamiliar with the work of Edge-
worth.
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For a review of the later discussion surrounding the
name “Kuiper belt,” see Davies (2001) and Fernandez
(2005).

In order to reduce the amount of computer time required
for these direct integrations of orbital evolution, Duncan
et al. (1988) had increased the masses of the giant plan-
ets by a factor. = 40 in some cases, arguing that this
should not significantly affect the relative proportions of
objects captured from initially low vs. high inclinations.
Although their results failed to conform with those de-
rived from standard “diffusion” theory (e.g., Stagg and
Bailey, 1989), subsequent work using the rather smaller
planetary mass-enhancement factor. = 10 (Quinn et al.,
1990), as well as complementary simulations based on
the .pik-Arnold computational scheme (Ip and Fernan-
dez, 1991; but cf. Bailey, 1992), appeared to confirm the
validity of the approximation. Thus, in spite of later inves-
tigations (e.g., Manara and Valsecchi, 1992; Valsecchi
and Manara, 1997) to the effect that even. = 10 would
significantly affect the frequency distribution of orbital
energy changes per revolution and so distort the long-
term dynamical evolution (cf. Everhart, 1979), Duncan et
al.’s (1988) key result — the need for a flattened initial
source distribution to explain the observed low-inclination
Jupiter-family comets — became firmly established.

Page 13




V1191 Cyg (855 30gd O—C 418909 g (o 399

3 ol 03l s PF dnguare ciads « 2oyl oS50l
(IOTA/ME) o326 sWliis| oo Sl qozs sldilogls Caomnd 38,5 b pitio 09,515 !
s olK8S Sy b iy
O ORI K 33935 dummgo

doddio

5,5 e lgie 4 MAYET Luwgs 1965 Jlo jo a5 ol 59, 0.31 as 1o 51 olisS 590, LW Ursa Major g4 51 23,5 Sbge o V1191 Cyg e o)l

5 mam gl 4 e o5 0 plsl BVRI la il 0 g CCD s 4,2005 Lo o Pribullal bawgs ceiacs onl (o9 anlllas Crcnsss [1]008 5 sonlive
i i=804 gq=094

ol e (slo el )l 5 2is,S (3,5 FE VI, o)l il 05 (1Ko 5 ZhU 2011 Lo o [2] g0 5 b aboz 5l eo)liw sla il )y

e oo oy 3T 90 (o23lS e a5l o i | s (550 350 1 (9l Sl s caaS Glagle; Judod g (s 50505 @] i § (i ys Ghg, |,

O-C Jlogas ol on 4 ctlanlics 5| Juol> aya (5508l 5 draslns 28,5 aiaS (slagle; lie cul o [B]cils sogus puzr 0525 Jlaixl b 5 o)l pugbline sloclad

Ty g oanlio
bl e e a8y e an s oSl s Gle el als ssy 1002012 5oL blgl g bl 50 V1191 CyQ 85 e ao) g svalie
A=52"3015E, =29 37 02N

V s RyB =l au oDSIProll Jos CCD « jpmme o0 ,Kuls el (il 005l 5l b
I8 s S8 @ laalin slaools 5l (sy58 (i gl Sl (sl 0 plonil g o (sl 4l 25 205 ey Sae bg s T (b o caalie (285 plonil (ygmilr
oLl g e o,k lgie 40 1, GSC 03159-01593 6l g awlin ylgre 41, GSC 03159-01663 ,GSC 3159-1409 (sl 90 « Maxim DL
20500
1, Maxim DL asby; (2,5 (ST L oS 23505 args MAHAD J1331 05 s sl yy Lo 10 (slaslip c(5555 (it o 5 518 om0 533 Dl (stnlns sl
S o0 S 9 Al |y 5B (6598 (S g Ly
2 a1, V1191 CYg Lbgo 6,9 oo L UKo muoges ooliul [4] 2012 JLos .o EKMEKCT Lawgs o (355 (s 008l 51 5L & oyl o sl Matlab sty
o o las (@8,9] Cowd 4 BVR 2l an

BVR (slo il 55 V1191 Cyg (28,5 yuiio (599 (sioxio -1 JSi

2Ugo w08l g ©8 )5 g slaploj
O35 5031 5l oslil b 5 waz aieS slagle; 51 (65 5eSloo b s oolisl [B] KWEE (29, 51 52ld aw y2 j0 5 s T 5o (sl o ana (slaplo) et 52

HJD Min | = 2456154.369493 +0.31338877 xE @
+0.000012 +0.00000012

Joumnal for Occultation and Eclipsing (JOE) — IOTA/ME Page 14




0O-C _= Lo
42,5 sy O jlogad 5 dnlons O-C jy0lis cailons 21,5l CCD L a5 gulie ol ;5 05250 (2855 aiaS slaplej 655105 5 {1 abuly) s (55081 5 oolial
10308 Gelate O-C iowis 5 @b yloged (nl (55 2 00 el gl 2 51 g (2 US5)

-6 -10 2
0-C=-0.01592(+0.00548)-2.649(x0.816)x10 xE+0.1716(x0.1528)x10 xE

2
+0.02454(+0.00169) sin[0°.0002476E+0.9016(+0.0660)]
02 - - - - : : 02
015 4 0.15 |
01k 4 04 & 4
0 g '
o [#]
005 - 005 il
oF il ° ”‘&:,:;::)‘"’“s 1
Q3000 50600 40600 30600 -20600 -10600 6 10000 &ooo 56000 26000 36000 20000 16000 o 10000
Epoch Epoch
O-C (oo &l i -3 S O-C ,log0i -2 JScio
‘ ‘ o 1.28x10~ ‘ )
) 0.97M, )
el dalys s 4 L rle ol ey lade Jlaio (ol b a5 98l poms e 392
e o

1. Mayer, P., 1965. Bull. Astron. Inst. Czech., 16, 255.

2. Pribulla, T., Vanko, M., Chochol, D., Parimucha, S, & Baludansky, D., Liokumovich, E.m Lu, W., DeBond, H., De
Ridder, A., Karmo, T., Rock, M., Thomson, J.R., Ogloza, W., Kaminski, K., Ligeza, P., 2005a. Ap&SS 296,281.

3. Zhu, L.Y., Qian, S. B., Soonthornthum, B he, J.J., Liu, L., 2011. AJ 142, 124.

4. Ekmekci, F., Elmasli, A., Yilmas, M., Kilicoglu, T., Tanriverdi, T., Basturk, O., Senavci, H. V., Caliskan, S., Albay-
rak, B., Selam, S. O., 2012. New Astronomy 17, 603E.

5. Kwee, K. K., Van Woerden, H., 1956. BAN 12, 327K.

IONAL 0000( 5 s ool s aS C Wl IOTAIME 6,5 olas,bs JB o o ol SLL alie 51 sloasSr clbas ol

w » "7\); (=2, adl s jaud y LBl Gl (6,8 jlogd ooyt oS JS0 @ (>, sl yis o jLac]

¥ * % dilosomo idged mal,d | ailas, 5l eslitul Sl a8 5l 0 olKails Sgm oyl gl Albas) o ioe cls

* * o B

Widdle East section y —%> &= lashe sl G ud) 5 ST GBI QL I Grizren oS (o0 (o)l 5 S5
* * ; < s ol L R

? xo% L s (IOTAIME) i3 ole,bs &)l o g olial 6, San b 355 035, 45 soso slalios] miwls)

S Az B T T ¥ . . ‘s .
Y6 4g50Ct” el Gloyud g S JleS b 5 plnil g 325 Glal (ldd plojle Jbe slacole> (o) f/..fd Wb

Joumnal for Occultation and Eclipsing (JOE) — IOTA/ME Page 15




Photometry and O-C diagram of V1191 CYG

S. Ostadnezhad 1’2, M. Delband 1’2, A. Hasanzadeh?*’ 3
1 JOTA/ME Department of Eclipsing, 2 Shiraz University, 3 Institute of Geophysics, University of Tehran

Introduction
The variable star, V1191 Cyg, is an eclipsing binary of W UMA type with short period of 0.31 days, which was observed

in 1965 by Mayer as an eclipsing variable [1]. First photometry of this system was performed in 2005 using CCD BRVI by
q = 0.94 i =804

Pribulla led to extraction of some parameters like and of this variable [2]. In 2011 year, Zhu and
his colleagues reported the spectral type of this system to be F6V and derived the absolute parameters using spectro-
scopic and photometric solutions. The study and analysis of times of light minimum shows a cyclic period variation in the
system, that may be caused by the magnetic activity cycles of either the components or the presence of a third body[3].
In this article, we calculated the times of light minimum and derived new ephemeris. The possibility of the existence of a
third body and its mass is investigated also.

Observation and photometry
The observation of V1191 Cyg variable was carried out during 2012 summer and autumn, at Biruni Observatory of Shi-

o A=52"3015E, ¢ =29 37 02'N _ _

raz University located at coordinates, using CCD (DSI Pro 1l) BRV Jonson
filters. Observation completed in 7 nights and the exposure time was 25 seconds for each picture. To obtain the light
curve by Maxim DL software, we choose GSC 3159-1409 and GSC 03159-01663 as comparison stars and GSC 03159-
01593 as the reference one. We prepared a program in Matlab environment to calculate the magnitude variations in
phase and obtain the light curve. The input file of our procedure was the output Excel file of Maxim DL, and we obtained
the light curve in phase using the 2012 ephemeris of Ekmekci [4] to convert time to phase. Figure 1 shows the obtained
light curve of V1191 Cyg in BRV.

Figure 1- Light curve of V1191 Cyg variable
in BVR.
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04 05 06 07 08 09 1 11 12 13

Times of light minimum and new ephemeris
To find the times of light minimum in all 7 night and every filter, we used Kwee method [5]. After averaging new times
and using Ekmekci ephemeris, our new ephemeris was obtained:

HJD Min | = 2456154.369493 +0.31338877 xE

+0.000012 +0.00000012 @
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O-C analysis

Using our new ephemeris and collecting other available data of times of light minimum captured by CCD, the O-C value
is derived and the diagram is obtained (fig. 2). Investigating this diagram, we fitted the following function to the O-C
curve:

-6 -10 2
0-C=-0.01592(+0.00548)-2.649(+0.816)x10 xE+0.1716(x0.1528)x10  xE )

+0.02454(+0.00169) sin[0°.0002476E+0.9016(+0.0660)]
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Light Curve Analyze and Variation Study of EQ Tauri

M. Nemati !, F. Farsian *, A. Hasanzadeh *?
! JOTA/ME Department of Eclipsing, ? Institute of Geophysics, University of Tehran

The eclipsing binary EQ Tau was discovered to be a variable star by Shapley & Hughes (1940). Tsesevich (1954) pre-
sented visual observations from 1942, and Magalashvili & Kumsishvili (1971) presented light curves from 1968 to 1969.
System of EQ Tauri known as an overcantact system. Period of this star is 0.341349 day and variable of magnitude in
visual is 10.5-11.03.

Following the publication of an accurate radial velocity and mass ratio study by Rucinski et al. two photoelectric light-
curve studies of EQ Tau have been published. Pribulla & Van ko (2002) obtained BV light curves over four nights in
2000 December through 2001 February. Yang & Liu (2002) obtained complete BV light curves on two nights in 2001 No-
vember and December.

Observation of EQ Tau were made on one night at October 2013 with the 16” LX200GPS Schmidt-Cassegrain tele-
scope at the Alborz space center Observatory, Mahdasht, Karaj, equipped with a CCD, model: SBIG 1100 M, and stan-
dard filters. Our exposure time was 30s.

New light curves in R,V,B Filters are presented, photometry of EQ Tauri have done by CCD and light curves extracted
from that. In this paper changes in orbital period are proceeded with Kalimeris method and the result reveal this parame-
ter oscillate with a cycle of 49 yr. From the present times of minimum and those collected from other papers O-C dia-
gram plotted and new ephemeris is presented:

Tmin(HJD) =52296.70707 + x0.34134713 E
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Fig 1: Light Carve in BVR Fig 2: O-C diagram
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A Photometric study of SW Lac and its O-C diagram

S. Zahabi *, A. Karbassi ¢, A. Hasanzadeh?’?
! JOTA/ME Department of Eclipsing, ? Institute of Geophysics, University of Tehran

Introduction

The eclipsing variable SW Lac first discovered in Harvard Observatory. This variable is a binary of W UMa type with
short period of 0.32071 days. This binary has magnitude range from 8.6 to 9.4 and is located in Lacerta constellation.
SW Lac consists of two stars having nearly same mass (equal to the mass of sun) with different reported spectral types
such as G3, G5, KO, G8 and recently G5 (Rucinski et al.2005). Many observers are interested in this system, for exam-
ple Dugan and Wright (1939), and the reason is the period variation of the binary [1].

Observation and photometry
The observation of SW Lac carried out in Iran Space Agency observation located in Mahdasht, Karaj, Iran. The observa-
tion dates are 2012, October 15th ,16th and 17th. Equipment included a SBIG 11000 CCD and a 16 inch LX200 Meade

Schmidt-Cassegrain Telescope. The SBIG 11000M camera has 1339890 pixels and the exposure time was 3 sec-

onds. The comparison star was SAO 72811 with magnitude of 10.99 in B filter and 9.96 in V filter with G5 spectral type
and the selected reference star was TYC3215-906-1 with magnitude of 12.23 in B filter and 11.46 in V filter. Light curve
and new ephemeris calculated here are based on ephemeris of Kelvin B.Alton and dirk Teller in 2005[1].

Min | (Hel)=2451056.2674+0.32071813x E W
1

The photometry of data performed in Maximdl 5.8 and IRIS in three filters RVB and the light curve is shown in figure 1.
One time of light minimum of the first minimum and three ones of the second light minimum obtained through Kwee
method and by fitting Gaussian function in B, R and V filters[2]. In table (1), 4 times of light minimum are obtained in
three observation nights which are averaged over 3 filters.

Using these minimums and 130 other minimums published before during 9 years, the new ephemeris calculated as:

MIN.I (hel.] =2451056.25 717+0.320719486E

)
1.4
12
08
06 -
04 Time of minima Type Filter o-C Epoch
i —#—light curve visual filter (hel.HJD+2400000)
—&— light curve blue filter ||
o- —a—light curve red filter 56216.47907 B&V 0.00573 16089.5
02 - A 7 r Il
\ / -‘ 56217.43985 B&V&ER 0.004356 16092.5
[
o W w 56218.24311 B&V&ER 0.00581 16095
-0.8 ”
4 : : : 56218.40336 B&V&ER 0.005705 16095.5
04 0.2 o 0z 04 06 08 E §
Figure 1- Light curve of SW Lac variable in BVR Table 1- Times of minimum and O-C of SW Lac
O-C analysis

The O-C curve of SW Lac is shown in figure (2) since 1892 to 2012 and according to errors of instruments the weight of
CCD data set to 2 and the weight of photometric captured visual data set to 1.

Wy

Figure 2- The O-C curve of SW Lac using weight of data since 1892 to 2012
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Data with weight 2 are more accurate data (since 1951) which we fitted a parabolic and a twice sine curve using Matlab
and Period4. The result is shown in figures (3) and (4). The period of eclipsing variable we studied is reducing in rate of

-2
1.6086x10 in year; Since the binary is considered as a contact binary, we can assume a mass transfer rate of

= 2.798x10°0 (1)
year

Figure 3- fitting para- - N

Figure 4- fitting
bolic and two sine N parabolic and
curve to O-C using | / two sine curve
ephemeris 1 ® / to O-C using

e ephemeris 2

O-C =2451056.25 717 +0.320719486E —8.174x10 ™ E* +
0.01627[sin 0.00025356E + 3.609584] + 0.00666[sin 0.00012295E +5.210563]
The periodic O-C curve can be due to the presence of a third body. The period of the third body, then would be

P, =6781 _ N 0.01627

year and the amplitude of its motion, would be days. Because of fitting two sine curve to O-C, we

P, =139.84
can consider the possibility of the existence of a fourth body, which its period could be * year and the ampli-
0.00666 . _ m, =0.65m, _
tude could be days. The mass of the third body obtained as and forth body obtained as
m, = 0.08m,
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